13 research outputs found

    Unmanned Aerial Systems for Wildland and Forest Fires

    Full text link
    Wildfires represent an important natural risk causing economic losses, human death and important environmental damage. In recent years, we witness an increase in fire intensity and frequency. Research has been conducted towards the development of dedicated solutions for wildland and forest fire assistance and fighting. Systems were proposed for the remote detection and tracking of fires. These systems have shown improvements in the area of efficient data collection and fire characterization within small scale environments. However, wildfires cover large areas making some of the proposed ground-based systems unsuitable for optimal coverage. To tackle this limitation, Unmanned Aerial Systems (UAS) were proposed. UAS have proven to be useful due to their maneuverability, allowing for the implementation of remote sensing, allocation strategies and task planning. They can provide a low-cost alternative for the prevention, detection and real-time support of firefighting. In this paper we review previous work related to the use of UAS in wildfires. Onboard sensor instruments, fire perception algorithms and coordination strategies are considered. In addition, we present some of the recent frameworks proposing the use of both aerial vehicles and Unmanned Ground Vehicles (UV) for a more efficient wildland firefighting strategy at a larger scale.Comment: A recent published version of this paper is available at: https://doi.org/10.3390/drones501001

    Does Glass Size and Shape Influence Judgements of the Volume of Wine?

    Get PDF
    This is the final version of the article. It first appeared from PLOS via http://dx.doi.org/10.1371/journal.pone.0144536Background \ud Judgements of volume may influence the rate of consumption of alcohol and, in turn, the amount consumed. The aim of the current study was to examine the impact of the size and shape of wine glasses on perceptions of wine volume. \ud \ud Methods \ud Online experiment: Participants (n = 360; recruited via Mechanical Turk) were asked to match the volume of wine in two wine glasses, specifically: 1. the Reference glass holding a fixed reference volume, and 2. the Comparison glass, for which the volume could be altered until participants perceived it matched the reference volume. One of three comparison glasses was shown in each trial: ?wider? (20% wider but same capacity); ?larger? (same width but 25% greater capacity); or ?wider-and-larger? (20% wider and 25% greater capacity). Reference volumes were 125ml, 175ml and 250ml, in a fully factorial within-subjects design: 3 (comparison glass) x 3 (reference volume). Non-zero differences between the volumes with which participants filled comparison glasses and the corresponding reference volumes were identified using sign-rank tests. \ud \ud Results \ud Participants under-filled the wider glass relative to the reference glass for larger reference volumes, and over-filled the larger glass relative to the reference glass for all reference volumes. Results for the wider-and-larger glass showed a mixed pattern across reference volume. For all comparison glasses, in trials with larger reference volumes participants tended to fill the comparison glass less, relative to trials with smaller reference volumes for the same comparison glass.\ud \ud Conclusions \ud These results are broadly consistent with people using the relative fullness of glasses to judge volume, and suggest both the shape and capacity of wine glasses may influence perceived volume. Perceptions that smaller glasses contain more than larger ones (despite containing the same volume), could slow drinking speed and overall consumption by serving standard portions in smaller glasses. This hypothesis awaits testing.The study was funded by the Department of Health Policy Research Programme (http://prp.dh.gov.uk/) (Policy Research Unit in Behaviour and Health [PR-UN-0409-10109]). ASA and MRM are members of the UK Centre for Tobacco and Alcohol Studies, a UKCRC Public Health Research: Centre of Excellence. Funding from British Heart Foundation, Cancer Research UK, Economic and Social Research Council, Medical Research Council, and the National Institute for Health Research, under the auspices of the UK Clinical Research Collaboration, is gratefully acknowledged. None of the funders had a role in the study design, data collection, analysis, interpretation, or decision to submit for publication. The research was conducted independently of the funders, and the views expressed in this paper are those of the authors and not necessarily those of the funders

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    A Roadmap for HEP Software and Computing R&D for the 2020s

    Get PDF
    Particle physics has an ambitious and broad experimental programme for the coming decades. This programme requires large investments in detector hardware, either to build new facilities and experiments, or to upgrade existing ones. Similarly, it requires commensurate investment in the R&D of software to acquire, manage, process, and analyse the shear amounts of data to be recorded. In planning for the HL-LHC in particular, it is critical that all of the collaborating stakeholders agree on the software goals and priorities, and that the efforts complement each other. In this spirit, this white paper describes the R&D activities required to prepare for this software upgrade.Peer reviewe

    Median differences in volume perceived in ml (perceived matched volume in comparison glass minus actual volume in reference glass).

    No full text
    <p>Asterisks indicate significant differences between actual and perceived volumes (Bonferroni-corrected Wilcoxon sign-rank tests, testing difference from zero); all differences p<0.001.</p
    corecore